Answer the following questions

أجب عن الأسئلة التالية موضحا رقم السؤال في وسط السطر

Question (1) (23 Marks)

- (a) Which of the following aqueous solutions will boil at the highest temperature? And explain why? Note: all of the salts listed below are completely soluble in water.
 - (i) A 0.50 m solution of NaCl.
 - (ii) A 0.50 m solution of Na₃PO₄.
 - (iii) A 0.50 m solution of Na₂SO₄.
- (b) Calculate the molarity of a solution that contains 9.65 g CaCl(OCl) in 500 ml of solution. (Molar mass of CaCl(OCl) = 126.85 g)
- (c) Which freezes at a LOWER temperature, Nile water or See water? Briefly explain your reasoning.
- (d) Calculate the freezing or boiling point of a solution made by dissolving 12.8 g of naphthalene (C_{10} H_8) in 200 g of CCl_4 . (Molar mass of $C_{10}H_8$ = 128 g/mol , K_f for CCl_4 = 29.8 °C/m , K_b for CCl_4 = 5.02 °C/m, Boiling point of CCl_4 = 76.8 °C, Freezing point of CCl_4 = -22.3 °C).

Best regards Ass. Prof. Dr. Mahmoud Elkomy

Question (2) (22 Marks)

- (a) State the following:
 - (i) The first law of thermodynamics
 - (ii) Hess's law
- (b) When 1 mole of methane $CH_{4 \text{ (gas)}}$ is burned at constant pressure, 890 kJ of energy is released as heat. Calculate ΔH for a process in which a 5.8 g sample of methane is burned at constant pressure.

$$CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(L)}$$
 $\Delta H = -890 \text{ kJ}$

- (c) How many joules are required to increase the temperature of 100 g of copper from 10°C to 100°C the specific heat of copper is 0.389 J/gC°.
- (d)The standard heat of formation ΔH_f^0 of $C_2H_{4\,(g)}$, $CO_{2\,(g)}$ and $H_2O_{(L)}$ are, 52.3KJ/mole, -393.5 KJ/mole and -285.8 KJ/mole respectively. Determine the heat of combustion of one mole of $C_2H_{4\,(g)}$

$$C_2H_4_{(g)} + 3 O_2_{(g)} \rightarrow 2CO_{2(g)} + 2H_2O_{(L)}$$
.

Best regards Dr. Shahera Shohyeb

Question (3) (23 Marks)

- (a) Discuss each of the following:-
 - (i) Boyle's law
 - (ii) Graham's law of diffusion
 - (iii) The law of mass action.
- **(b)** For the reversible reaction

 $N_2(g) + 3H_{2(g)} \leftrightarrow NH_{3(g)}$ at 723°C, the value of $Kp = 1.45X10^{-5}$.

Calculate Kc for this reaction.

(c) Calculate the pressure exerted by one mole of carbon dioxide at 27°C in a flask whose volume is 4.00 liters.

Best regards Dr. Fadwa Hashem

Question (4) (23 Marks)

(a) Define each of the following:

Equivalent conductance – Buffer solution – Faraday s first law.

- **(b)** Calculate the pH of 0.1 N NH₄OH $(K_b=10^{-5})$.
- (c) For the Cell Zn/Zn⁺² $_{(0.004M)}$ //Cd⁺² $_{(0.2M)}$ /Cd The standard electrode pot. (Both as reduction) for Zn (-0.763V) and for Cd(-0.403V) calculate emf of the cell.
- (d) How many hours will be required to deposit 11.24gm of Cd metal from a solution of CdSO₄using 1.75amp.current?[Atomic wt of Cd=112.4].

Good Luck Dr. Manal Elhefnav	vy
------------------------------	----